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ABSTRACT

HEISHI is a Fortran computer model designed to aid in analysis, prediction, and optimization
of fuel characteristics for use in Space Nuclear Thermal Propulsion (SNTP). Calculational
results include fission product release rate, fuel failure fraction, mode of fuel failure, stress-
strain state, and fuel material morphology. HEISHI contains models for decay chain
calculations of retained and released fission products, based on an input power history and
release coefficients. Decay chain parameters such as direct fission yield, decay rates, and
branching fractions are obtained from a database. HEISHI also contains models for stress-
strain behavior of multilayered fuel particles with creep and differential thermal expansion
effects, transient particle temperature profile, grain growth, and fuel particle failure fraction.
Grain growth is treated as a function of temperature; the failure fraction depends on the
coating tensile strength, which in turn is a function of grain size. The HEISHI code is
intended for use in analysis of coated fuel particles for use in particle bed reactors; however,
much of the code is geometry-independent and applicable to fuel geometries other than
spherical.
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1 INTRODUCTION
1.1 Purpose of HEISHI Model

The purpose of developing the HEISHI Fuel Performance Model is to aid in analysis,
prediction, and optimization of fuel characteristics for use in Space Nuclear Thermal
Propulsion (SNTP). The information desired is fission product release rate, fuel failure
fraction, mode of fuel failure, stress-strain state, fuel material morphology, and chemical
behavior of fuel under experimental, operational and accident conditions. The HEISHI code
is intended for use in analysis of coated fuel particles for use in particle bed reactors;
however, much of the code is geometry-independent and applicable to fuel geometries other
than spherical.

1.2 General Description of Features

The current version of HEISHI, Version 2.1, contains models for decay chain calculations for
retained and released fission products, based on an input power history and release
coefficients. A particle bed temperature profile may also be input to get total release from an
entire particle bed. Decay chain parameters such as direct fission yield, decay rates, and
branching fractions are obtained from a database.

HEISHI also contains models for stress-strain behavior of multilayered fuel particles with
creep and differential thermal expansion effects, a transient particle temperature profile,
grain growth, and fuel particle failure fraction. Grain growth is treated as a function of
temperature, and the failure fraction depends on the coating tensile strength, which in turn
depends on grain size.

Possible areas for future improvement include models for changing particle geometry and
morphology to allow treatment of melting and dissolution, and models for coating oxidation
and fuel chemistry.

1.3 Intended Application

The intended application of HEISHI is as a tool for evaluating current and proposed fuel
designs. Analysis of experimental data on failure and fission product release can be done and
related to the stress-strain state in the fuel during the experiment. The same can be done for
operational or accident scenarios. A further application is to parametrically investigate
designs to attain desired design goals, such as minimizing failure fraction.

The HEISHI code is not limited to a particular fuel particle design or material choice, and can
be used to evaluate proposed designs in terms of material selection and number or thickness
of layers to attain design goals.



2 FISSION PRODUCT MODELING
2.1 Decay Chain Equations

The equations solved by HEISHI to calculate radionuclide activity are a set of coupled
ordinary differential equations representing beta decay chains. There is a set of decay
equations for retained nuclides and a coupled set for released nuclides. The decay chain
equations are coupled between parent and daughter nuclides in the same chain and between
retained and released nuclides. The decay chain equations do not account for other decay
modes such as alpha decay.

2.1.1 Simplifying Assumptions

The beta decay equations are solved using some simplifying assumptions:

1. The fission power source is assumed to be uniformly distributed in the first (inner) layer,
or core, with no spatial dependence.

2. No decay modes other than beta decay are considered, so that the beta decay chains are
uncoupled from one another.

3. The initial inventory of radionuclides is assumed to be zero.

4. Radionuclides are assumed to be either retained in the fuel particle or released.
Radionuclide profiles in the coatings or kernels are neglected (Note: an early experimental
version of HEISHI does have the capability to calculate transient profiles, but was
abandoned because it required detailed knowledge of diffusional release mechanisms
which are unknown or not supported by the quality of available experimental
measurements).

The decay equations for a single decay chain can be written as

n; =By, - (A; + a;)n; + EfBj.iAjnj (1)
3
and
Ry = (@; = A;) ng; + Efajil'jnRj (2)
J
where
A, = rate of change in atoms of nuclide i per second,

B = fission source term, fissions per second,
y;, =  fractional direct fission yield,



decay constant for nuclide i (s™"),

o, = release coefficient for nuclide i (s),

n; =  number of atoms of parent nuclide j,

fsi = branching fraction for decay of nuclide j to nuclide i,
=  rate of change in released atoms of nuclide i per second,
ng; =  number of released atoms of parent nuclide j.

As seen in the above equations, the release coefficient o, plays the same role in the retained
nuclide Eq (1) as the decay constant A, and, in the released nuclide Eq (2), the same role as
nuclide source. Note that the decay equations are written in terms of total numbers of fission
product atoms in the problem. In HEISHI, the input parameters are the reactor power and a
coupling factor relating the reactor power to power per unit volume of particle bed; this
facilitates use of the code in analyzing reactor experiments. The fission source term P is
written in terms of the input parameters as

Cr

= ), (3)
P Q 29x10712
where
g = Input power (W),
C, = Coupling factor, (W-bed/W-reactor/m*-bed),

and the factor 29 x 10" is the Joules per fission.
The product QC; has the units of bed power in Watts per unit bed volume in m®. For a self-
driven reactor, Q would represent the total reactor power and C, would represent average
power density (W-bed/m’-bed).
2.2 Release Coefficients
2.2.1 Relation to Release Fraction
The relation of the release coefficients o; defined above to the release fraction of nuclides can

be more easily seen by a simplified example. Neglecting the contribution of the parent
nuclide decay, Eq (1) has the solution for a constant fission source B of

N, = pyi(l - e, q'. = q

i ; i (4)
o

1

The number of atoms released per second at any time is the product of the number of retained
atoms and the release coefficient, so that the fraction f, of atoms released for nuclide i at any
given time can be expressed as the release rate divided by the production rate



(5)

The total release fraction of nuclide i can be obtained by integrating Eq (5) over the total
irradiation time ¢, and dividing by the irradiation time to get

F. = & (l _ (1 - e_a"t")] (6)

n «'; “'if—'o

The release fraction F,, is identical with the release-to-birth ratio (R/B) defined in terms of the
direct yield, except that the contribution of parent nuclide decay is neglected.

When the contribution of the parent nuclide is included, the relation is much less clear, since
a large part of the R/B ratio can come from parent nuclide decay.

222 Release Mechanisms — Intact Fuel Particles

The release coefficients should be related to real physical variables if the code is to be used to
extrapolate results under conditions very different from the validation data base. Empirically,
release coefficients can be determined from experimental release rates, but this procedure does
not give any physical insight as to the processes controlling release and does not allow much
faith when scaling experimental results to other operating regimes. Release coefficients can
also be related to known fission product transport mechanisms such as diffusion through
solids.

Diffusion through solids is governed by Fick's Law,

dc 7
= - —

where

=  atomic flux (1/m?s),
diffusion coefficient (m?s),
atomic concentration (1/m?),
= spatial dimension (m).

il

A VRS
!

The diffusion coefficient D is a function of temperature and is usually expressed in the
Arhennius form
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D(T) =D e R

o

-3

where

D, lead coefficient (m%/s),

Q0 = activation energy (J/mol-K),
R = Gas constant (8.314 J/mol-K),
T temperature (K).

(8)

The release rate from a single particle is equal to the atomic flux times the particle area, or

JA, where A is the particle area. In terms of Fick's Law, this can be written as

JA = ADE = an
dr

To estimate the release coefficients from (9), the following assumptions are made:
1. The outer coating controls the release rate.

2. The fission product distribution is steady-state in the coating, so that a linear
approximation is valid.

3. No storage or holdup of fission products in the coating.
4.  Fission product distribution is flat in the interior of the coating.

Given the assumptions for the distribution, Eq (9) can be written as

n/v
an = AD ( /0 ) /
where
V. = volume inside coating (m®),

from which the release coefficient can be seen to be

- DA
R 7
where
¢ = thickness of coating (m),
A = area per particle (m?).

(9)

(10)

(11)



The above formulation assumes that the fission product concentration is spatially uniform in
the interior volume of the coating. Another possible assumption is that transport of fission
products from the fuel kerel across an internal porous buffer layer (a feature in some particle
designs) occurs by gas-phase diffusion rather than solid-phase diffusion. The partial pressure
in the buffer layer is then proportional to the fission product mole fraction times the saturation
partial pressure in the kernel, so that if a uniform partial pressure in the buffer layer is
assumed, the mole fraction at the inner surface of the coating is the same as the mole fraction
at the outer surface of the fuel kernel. The effective release coefficient is then given as

«n =A—€xccc (12)
where
X = mole fraction of fission product at the inner coating surface (in the buffer
layer),
c. = atom concentration of the buffer layer material (m™).

Since the mole fraction is the same as the kernel mole fraction given by

e = — = — = (13)

¢, = atom concentration of the kernel material (m),
v, the kernel volume (m?),
the release coefficient can be written as

C
a =al_Ctc (14)
0 V.cp

This method of estimating release coefficients from diffusion coefficients has been found to
give good agreement with release activity in gas samples from the Particle Nuclear Test
(PNT) experiments for some nuclides thought to be released principally from intact fuel
particles. In those experiments, initial release coefficient estimates were derived as above
from bulk diffusion coefficients and the resulting calculated releases compared to measured
activities from gas samples. Although it is thought that the agreement in this case between
calculated and measured release coefficients may be fortuitous, the procedure can also be
thought of as a scaling procedure, and used to derive release coefficients from diffusion
coefficients for other types of diffusion-governed processes, such as grain-boundary diffusion.
The procedure should give reasonably good estimates of the release coefficients in cases
where the particles are in a steady-state diffusion mode. An option to calculate release
coefficients according to the above formula from bed temperature and the particle material
and geometric parameters is included in HEISHI



2.2.3 Release Mechanisms — Failed Fuel

In the PNT3 and PNT4 experiments, xenon
(Xe) was released in larger quantities than
seemed consistent with the other nuclides
(thought to be released from intact fuel via a
diffusional mechanism). Also, in PNT3 the
activity increased with consecutive samples,
suggesting a continuous release mechanism.
The Xe was thought to be released from the
surface of failed fuel material. Possible
mechanisms for this surface release are
release of Xe originally on the grain
boundary from the fuel surface, and direct
recoil release as the parent nuclide on the
surface decays (see Figure 1). This second
mechanism suggested a release term of the
form

Release Mech 1

Release Mech 2

@gn, = A,n fe Ly, Figure 1 Xe release mechanisms from

A,D (15) fuel grain.

oy = direct release coefficient (s™),

Junr = fraction of failed fuel,

f, = fraction directly released,

A, = surface area of fuel grain (m?),
& = effective depth into grain (m),
vV, = fuel grain volume (m’*).

In the above derivation, the fraction of the parent nuclide that can directly release the
daughter is taken to be 1/2 the amount of parent nuclide atoms within a distance 8 of the
surface, divided by the grain volume. If the depth & were interpreted instead as the grain
boundary width, then the formula for f, is seen to be 1/2 the grain boundary volume divided
by the grain volume, or 1/2 the fraction of the parent on the grain boundary. The direct
release coefficient o, appears in the retained nuclide decay equation as an additional decay
constant in the parent equation, and in the released nuclide equation as an additional release
term proportional to the retained parent nuclide.

In the analysis of the PNT3 and PNT4 data, it was observed that the release of Xe from failed
fuel appeared to be proportional to the amount of retained Xe, rather than to the retained
parent, iodine (I). The dependence on retained Xe was suggested because the parent iodine



decayed too rapidly to match the observed data on Xe activity, even if most of the iodine
were released. This observation supports the idea of a direct release mechanism in which the
Xe on the grain boundary is released gradually over a period of time, as expressed in Eq (16):

Ad
a.n = Csnffa“—‘}L- (16)
g

The actual physical descriptions of these hypothetical direct mechanisms have not yet been
resolved. The data from the PNT5A experiment, which included counting of surfaces of
experimental components, indicated a release rate of Te-I 300-900 times higher than was
apparent from gas sample data, with most of the Te-I adsorbed on the carbon foam insulators.
Xe release from these component surfaces via decay of the parents can account for a good
portion of the observed gas Xe activity in PNTSA. Presumably, comparable amounts of Te-I
were adsorbed on metal surfaces in PNT3 and PNT4, so that the magnitude of Xe release
from the surface of failed fuel is uncertain. Surface counts of components in PNT5B also
showed comparable Te-I activities. The PNTSB experiment was not fully analyzed due to
program cancellation.

2.2.4 Particle Bed Temperature Profile Option

There is an option in HEISHI Version 2.1 to calculate total release from a cylindrical particle
bed accounting for a two-dimensional temperature profile in the particle bed. This is done by
reading bed geometry and bed temperature information from an input file; the input file is
usually generated by a separate code that calculates bed temperature versus radius and height.
The temperature distribution is normalized using an input normalization temperature, and the
resulting temperature profile shape is assumed to be constant in time. A set of activation
energies for the nuclides in the problem are also read from a database. The temperature
profile and activation energy are then used to calculate the variation in the read-in release
coefficient for each nuclide with bed temperature, and the resulting spatially-dependent release
coefficients integrated over the bed volume to give an effective bed release coefficient o for
each nuclide, which is used in the decay equations.

Although the above procedure gives a reasonable way to account for bed temperature
variations, note that it does not account for a possible spatial profile in reactor power
deposition in the bed which may accompany the temperature profile.



3 FISSION PRODUCT CODING AND SOLUTION METHOD

3.1 Finite Difference Equations

The decay chain equations, Eq (1) and Eq (2), form a set of coupled ordinary differential
equations (ODEs). To maintain generality in the allowable input form of the power Q(t) and
release coefficients oyT,z), the equations are solved by finite difference methods rather than a
direct analytic solution.

The decay equations can be expressed in finite difference form as

n, =0} + P(oy, t)At, k =1.NC (17)
ng = 0% + Py(nh, of, t)At, k = 1.NC (18)
where
n, = vector of retained nuclides in decay chain k, each element of the vector being
the number of atoms of a nuclide,
F() = vector of derivatives for the retained nuclides in decay chain k,
ng, = vector of released nuclides in decay chain k, each element of the vector being

the number of atoms of a nuclide,

Fi) = vector of derivatives for the released nuclides in decay chain k,
At = timestep (s),
NC = number of chains.

In the above equations, the derivatives F() and F() are shown as functions of time and the
other nuclides in the chain. The equation for the nuclide with atomic number Z is only
coupled to at most three parent equations: the Z-1 nuclide (direct beta decay), the Z-1M (beta
decay from a Z-1 metastable nuclide), and ZM (gamma decay from a Z metastable nuclide).
The released nuclide derivatives can also be functions of the retained nuclides if a direct
release coefficient is used (release proportional to the retained parent). The time dependence
of the derivatives is from the fission source and the release coefficients. The superscript /on
the nuclide vectors in the derivatives indicates evaluation at some intermediate time during the
timestep, and the superscript n refers to evaluation at the old time.



The derivatives can be written for decay chain k and nuclide 1 as

3
Fri = PO Vi, s — (@:(8) + A )my i (8) + (1 - ag (£)) Y Aymy ;5 (¢) (19)
EEt
3
Frg,i = @;(6) B 1 (8) = Ay iDge s (E) + &gy (€)Y Aymy 5(¢) (20)
=1

The surface release coefficient is combined with the diffusion release coefficient a(t), since
the surface release is also proportional to the retained nuclide.

3.2 Solution Method

The solution method for the set of coupled ODEs described in Eq (17) through Eq (20) is
Euler's method, meaning that the derivatives F and F, are evaluated using old-time values of
the nuclide numbers. The actual procedure is a variation of an algorithm (Press 1986, 1992)
for solving coupled ODEs, except that the 4th order Runge-Kutta algorithm given there for
evaluating the derivatives has been replaced with Euler's method. The Euler solution method
has been compared with the Runge-Kutta solution over times of interest for HEISHI
applications (minutes to weeks — see TEST PROBLEMS Section 4).

The integration procedure is called with a main timestep; the procedure returns the nuclide
numbers at the end of the main timestep. Error in the solution is controlled by evaluating the
equations over each main timestep twice: at the current integration timestep (which can be
smaller than the main timestep) and at half the current integration timestep. If the relative
error between the two solutions is greater than an error criterion, the integration timestep is
halved and the procedure repeated until convergence is obtained.

3.3 Dropping Insignificant Nuclides

The maximum timestep that can be taken by the ODE integrator is controlled by the shortest
halflife nuclide in the problem according to the formula

At,,, = o.ssaA—OLL (21)

shortest

This formula sets the maximum timestep to 0.3 of the shortest half-life. If the maximum
timestep could be increased, the number of timesteps taken during the problem could be
decreased, and hence the actual computer central processor unit (cpu) time needed for the
problem could be decreased. The maximum timestep can be increased by removing short-
half-life nuclides from the problem,; this is done by noting that the shorter half-life nuclides
will, for the most part, decay quickly in the beginning of the problem. As the total number of

10



retained atoms of a nuclide becomes less than a cutoff limit (10* atoms is the current default),
the decay equation for the nuclide is dropped from the set of decay equations. The dropping
of the short-half-life nuclide is only done when the fission source is zero.

11



4 TEST PROBLEMS

4.1 Comparison of Euler and Runge-Kutta Methods

In many applications involving integration of ODEs, Euler's method is frowned upon because
the method is only second-order accurate in the timestep, thereby usually requiring shorter
. timesteps than would be required with a more accurate (fourth-order) method to attain a given
level of accuracy in the solution. The main benefit of Euler's method is the simplicity of the
algorithm and the consequent quick solution times on the computer.

In the present application, the drawbacks of Euler's method are not important for three
reasons. The first reason is that the maximum timestep is set by the fastest decaying nuclide
in the problem at any moment: the large difference in half-lives between the fastest decaying
nuclides, in which we are not interested, and the slower-decaying nuclides, in which we are,
ensures that a sufficient number of timesteps will be taken to give good accuracy in the
solutions for the slower-decaying nuclides. The second reason is that the release coefficients
are generally not known to within more than a factor of 2-5, so inaccuracy in the solution of
the ODEs for released nuclides is not particularly important for problems of interest. The
third reason is that HEISHI uses an error control algorithm, as described above, to control the
error for each timestep. This error control will generally have the effect of producing the
same answer with Euler's method as with another more accurate method by using shorter
timesteps.

The Euler solution method was compared to a fourth-order Runge-Kutta method (Press and
Teukolsky 1992) on a typical HEISHI problem: the solution for the retained and released
nuclides in the 133 decay chain for a power history and release coefficients typical of the
PNT3 experiment. The problem involved an irradiation of 350 s, during which nuclides were
assumed to be released at rates given by the release coefficients, followed by beta decay of -
the retained and released nuclides. The decay curves were computed to a final time of

10 days.

The comparison revealed that there were differences in the solution on the first timestep of
50% in all nuclides; this is probably a difference in startup characteristics of the algorithms,
but involves solutions when the number of atoms of the nuclides are small. The error on the
initial timestep had no great effect on the error at later times. A maximum difference of 5%
was observed for later times for the fastest decaying nuclide in the chain (I, with a half-life
of 9's). Errors for parent nuclides earlier in the chain than I'**" were 2-3%; daughter nuclides
later in the chain had errors on the order of 1% or less. This level of error is unimportant,
given the level of uncertainty in the release coefficients and other experimental parameters.

4.2 Comparison to Analytic Solution

HEISHI calculations for retained nuclides were compared to an analytic solution for a two-
nuclide decay chain. The problem was specified as a constant fission source for a given time

12



1,, followed by zero power. The initial condition for the two nuclides was zero initial number
of atoms, corresponding to the HEISHI assumed initial condition. The two coupled ODEs to
be solved are

By, - An,, (22)

n, =

I, =By, - An, + Ay (23)
where the terms are as defined for the HEISHI decay chain equations. The solution is divided
into two time intervals: the interval while power is on from 0 to r,, and the interval while
power is off, for ¢+ > 1,. During the power-on interval, the solution is found for § > 0 and n,,
n, =0att=0. For time r > ¢, the solution is that for zero source and nonzero initial n, and

n, (given by the power-on solution at ¢ = t,), with the variable r replaced by 1 - ¢,.

Table I Parameters for Analytic Comparison
L. ]
p p £1 Y. A A, t
7 x 10% 0.01 0.01 0.02 0.01 300

110" ¢

[72)
£
ie]
<< 2.10% t
IS} /
110"}
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Figure 2 Comparison of analytic solution

and calculation for parent-

daughter decay
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Parameters used for the calculation are given
in Table I. These parameters are typical of
a fast-decaying nuclide and a typical reactor
power-on time for experiments. The decay
constant for nuclide 1 is large enough for
the solution to approach its limiting value
during the irradiation period. Other sets of
parameters can be expected to give similar
results. The maximum relative error was
1.7% between the analytic result and the
HEISHI calculation (Figure 2).



5 STRESS-STRAIN MODELING
5.1 Modeling Assumptions

The HEISHI code contains a stress-strain module adapted from the PSTRESS code
(Dobranich 1991). This module solves the stress-strain equations in radial geometry for a
multi-layered particle with time-dependent creep and thermal inelastic strains. The time-
dependent radial temperature profile in the particle is also solved, including either a
volumetric power source in the particle or an applied heat flux on the inner boundary of the
(hollow) particle. The stress and temperature results from the stress-strain and temperature
solution routines can be input to a grain growth model and failure fraction model.

Although the stress-strain module retains the code structure of the original PSTRESS code,
PSTRESS was written to solve the stress-strain and temperature equations in a spherical shell
and becomes inaccurate if the inner radius of the shell approaches zero. The stress-strain and
temperature equations were therefore written and solved in a different form so that the
calculation converges to the correct answers as the inner radius goes to zero, allowing
calculation of results for a solid sphere.

The main assumptions of the stress-strain and temperature models are

1. Radial geometry for stress-strain and temperature equations.

2. The stress-strain equations are steady-state. That is, the stress-strain state of the particle
is assumed to be instantaneously in equilibrium at any given time, and no transient strain
wave solutions are included.

3. Creep rates can be a function of the local shear stress and temperature.

4.  Thermal strains are calculated assuming a constant coefficient of thermal expansion for
each material layer.

5.  The power source is spatially uniform within each material region.

6. Material layers are connected and remain connected — they cannot separate under the
influence of tensile stress, and there are no initial internal void regions except possibly
in the center.

5.2 Stress-Strain Equations
The stress-strain equations are set up with the inelastic strains treated as extra body forces
(Lin 1968). Inelastic strains, as used here, mean any strain which does not obey Hook's law

relating stress and strain. The particle is divided into regions, with each region usually
corresponding to a separate material layer in the particle. The regions are further divided into
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a number of mesh cells in which the material properties, temperature, and inelastic strains can
be assumed constant. An equation for the displacement is formed for each mesh cell, with
appropriate boundary conditions on the edges of the cells:

1. The innermost cell has an inner BC of either pressure or zero displacement, and an outer
BC of continuous displacement.

2. The interior cells have inner and outer BCs of continuous displacement, meaning that the
displacement of a cell edge equals the displacement of the adjoining cell edge.

3. The outermost cell has an inner BC of continuous displacement, and an outer BC of
specified pressure.

5.2.1 Derivation of Equations

The displacement equation for each cell is derived as in Lin (1968) by substituting the
constitutive relations into the equilibrium equation. The constitutive relations can be written
as

o, = Ae - e’) + 2p(e, - ef/) (24)
gp = Ale - €) + 2p(ey - &) (25)

where

o, radial stress (Pa),

Oy = azimuthal stress (Pa),

A Wo= Lamé constants

e = total volumetric strain,

e" = total inelastic strain,

e, = total radial strain,

e", = radial inelastic strain,

eg = total azimuthal strain,

e’y = azimuthal inelastic strain.

The Lamé constants are written in terms of the material Young's modulus E and Poisson's
ratio v as
vE E (26)

VT a oy =T +w

The compatibility conditions
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- du - u = du u
g ST €T g te7 (27)
where
u = radial displacement (m),
r = radial coordinate (m)

are substituted into the constitutive relations to get stress in terms of displacement. The
constitutive relations are in turn substituted into the equilibrium equation

do, , , 9, -0 _, (28)
dr I

to get a differential equation for the displacement

de! el - ef
Lr” % (29)
dr tap r

d 1 d 2 - de’”
A+ 2“'&[; ar ”)] ‘gt 2k
This equation can be solved for the displacement by assuming constant material properties A,
M and integrating twice to get

(A+2p)u=ér+_§+_j:_1'(r) (30)
3 r? r?

where A, B are constants to be determined from the boundary conditions, and the term I(r) is
defined as

z z r 7y
I(r) = Afrze”dr + Zp.frze,ﬁ’dr + 4pfr”ferr_”e°dr”dr (31)
a a a

a

where the lower boundary of the cell is at radius a. Given appropriate boundary conditions
and expressions for the inelastic strains, the above Eq (30) can be solved for the displacement.
Once the displacement is known, the stresses and strains can be readily calculated from the
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appropriate equations. The azimuthal and radial strains are, using Eq (30) and the
compatibility relations,

_ 1 A B 1
ee ) A+—2"L[§ ' F ' FI(I) (32)
and
_ 1 A _ B _ 2 " "
er = _A-}—Zi‘[g ZF —I’—3I(I) + A.e + 2“8: + Il(I) (33)

where the integral term /,(r) is given as

1

r e//
I,(r) = 4pf’__dr (34)
a

r!

The strains can then be plugged into the constitutive relations to get the radial and azimuthal
stresses.

5.2.2 Case of Zero Inner Radius

If the inner radius a is zero, then the constant B in Eq (30) is zero. The azimuthal and radial
strains are then seen to be equal and constant at r = O in the absence of inelastic strains. If
inelastic strains are present, then both strains have a term involving an integral of the inelastic
strains divided by . The limit of this term as r — O must then be evaluated. This will be
deferred until the form of the inelastic strains has been determined in the next section.

5.3 Material Constitutive Relations

Material properties needed for the stress-strain solution are E and v, coefficient of thermal
expansion (CTE) a, and a creep law. These properties are needed for each material layer in
the problem. Currently, the properties are hardcoded into HEISHI as in the original
PSTRESS. Poisson's ratio v and CTE « are assumed constant and E is a function of
temperature. The creep law used can have a variety of forms but must return the creep rate
as a function of local principal (Von Mises) stress and temperature.
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5.3.1 Thermal Inelastic Strain

The thermal inelastic strains are calculated as

el = et = aAT, el =-¢el. + 2¢f. =3aAT, AT=-T- T, (35)

where T, is a reference temperature at which the thermal strains will be zero, for instance the
deposition temperature for Chemical Vapor Deposition (CVD) coatings.

5.3.2 Creep Inelastic Strain

The creep law usually is a power law of the form

b |

)"e'_ (36)

where

e
|

[a

creep rate (1/s),

creep constant (1/s),

principal (Von Mises) stress (Pa),

shear modulus (used for normalization) (Pa),
stress exponent,

= activation energy for creep (J/mol),

= gas constant = 8.314 J/mol-K,

= temperature (K).

)
]

NI BEsT™q >
Il

The creep strain for a timestep is calculated from the creep rate as

el = e (a, )AL + ! (37)

where the stress ¢ is the Von Mises stress, the superscript n refers to the previous timestep
value, and At is the stress-strain timestep. The radial and azimuthal components of the creep
strain are determined assuming incompressibility, so that

le s 2efl = 0 e

and the definition of the Von Mises creep strain (see Dobranich 1991, p. 72-73):
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el = %(eec - erc) (39)

where s is used to give the sign of the creep strain dependent on the order of the principal
stresses, so that

5 = +1, 00201 (40)
_l, 0°<OI

The radial and azimuthal creep strains are then given as

sel = 2epr = -el, (41)

5.4 Temperature Equations

The radial temperature in the particle is calculated by solving the time-dependent radial heat
conduction equation with power source

pCpg—f - %a—ar(kr“’%%) + g (42)
where
p material density (kg/m?),
c, = material specific heat capacity (J/kg-K),
k = material thermal conductivity (W/m-K),
g" = volumetric power (W/m’).

The temperature equation can be put in a conservative form suitable for finite difference
solution by multiplying the equation by 7, assuming constant material properties, and formally
integrating from r - &r to r + dr to get

2, 0T _ L2 8 (r‘)3 - (r): om o (x7)? - (r7)? . 9T
where
r*=r+0r, r =r-90&r. (44)

The finite difference equations can then be written by replacing the differential operators by a
suitable finite difference form.
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6 STRESS-STRAIN CODING AND SOLUTION METHOD

6.1 Finite Difference Equations

1/2
Cell Cell

——r—"
T,01 T, 0,

[EPEpEpp R PRt —
ececcsccdec e

I

Inner Interface Outer
Radius Node Radius
Figure 3 Finite difference mesh for stress-strain and temperature routines.

The finite difference mesh (see Figure 3) is set up with the regions (usually different material
layers) divided into a number of grid cells, inside of which properties are assumed constant.
Variables such as stress, strain, and displacement are located on the cell edges; this insures
continuity of displacement and radial stress. Variables that may be different across an
interface where cell edges of two different regions join are handled by including "auxiliary”
nodes, as in PSTRESS, at the inner edge of the outer cell of the interface.

6.1.1 Derivation of Finite Difference Equations

The finite difference form of the stress-strain equations are derived by first applying specified
displacement boundary conditions to the displacement equation; this results in an equation for
u in terms of boundary displacements u, and u,:

u=(r’-a?) by, v (b2 -1 CE—
(b3 - a3) r? (b® - a%) r? (45)
" 1@ - b)) %A + 2|,L)r2[(r3 -a’) I(b) - (b - &%) I(1)]

This expression for u is then substituted into the constitutive relation for radial stress to get
radial stress in terms of the boundary displacements:
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1

G, = TES rz{b2(4a3|,L +3r3) + 2r3p)u, + a?(3r%A + 4b3u + 2r3p)L
o f2°p Y I2(3A * 2B) rp) - g b I(zr) + I,(z)
(a3 - b3) (A + 2p) r2 (A +2p) r2 !

(46)

Now, the actual unknowns in the problem are the boundary displacements — the radial
stresses are known from the pressure boundary conditions or can be eliminated by subtracting
the solutions for two adjoining cells. Substituting known pressure boundary conditions at a
and b in the above radial stress equation gives

-P, = ﬁ{3ﬂb) -3b%(A +2p)u, + %(3Aa3 + 2pa’ + 4p.b3)ua}(47)
and
1 1
-P, = a—3—_—b-5{31(b) - B(3lb3 + 2pb3 + 4pad)u, + 3a? (A + 2p) Ua}(43)
+ I, (b)

Define the next cell from b to c. This gives another equation for P, in terms of the variables
in the next cell:

31'(c) - 3c?2 (A + 2p)) u,
-p, = % 1 (49)
b?* - ¢3 + T3(3).’b3 + 2p’b? + ap/c?)u,

where the superscript /is intended to indicate that the properties could be different in the cell
from b to ¢. Subtracting the two equations for P, then gives an equation in the unknown
boundary displacements u, and u_, which are also the displacements on the cell edges (nodes).
An equation of this form is used for each interior node in the problem. Interfaces between
material layers do not pose any difficulties and are handled the same way, except that some
auxiliary node variables are kept for quantities that are different across an interface, such as
azimuthal stress, radial strain, and inelastic strains.
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The nodes are numbered 1..N starting at the inner radius and going to the outer radius, so that
there are N cell edges (nodes) and N-1 cells. Using this numbering convention, the
displacement equation for u; can be written as

(3ar7 + 2pr] + aprl,y)  (3Ar] + 2p/r] + ap'ri)

0 = - —
I; (1'3 - r3—1) ( 3«1 - 3) :
+ 3r1.1(—L)u + 313_1ﬁ;‘3}i (50)
( i+1 = ) ( i~ Ti- 1)
. 3  r(r) - —3 _1/r,,) - I, ()
(r} -1, (£l - ) o P

where the convention is used that the unprimed terms are evaluated in cell i, the primed terms
are evaluated in cell i+, and the subscript i for quantities defined on cell edges, or nodes (u))
refers to the left (inner) edge of cell i.

6.1.2 Boundary Conditions

The inner boundary condition can be either a specified pressure condition (if the inner radius
is greater than zero, so that the particle is hollow) or a specified zero displacement:

o,(r,) = -P;,, or u(r,) =0 (51)

The equation used for an inner pressure BC is

p_ - -1 (3ar + 2prd + 4|.xr§)u + 312 (), +2p)
Tooon (rz - 17) ' (z7 - z2) (52)
3
- I(r,)
(123 - 17) 2

The outer boundary condition is always a specified pressure condition:
o,(R,) = -P, (53)

The equation used for the outer boundary node is

.1 (3Ary v 2pri v 4pTea) oL g0a (A 2p)
1 N L AA +2p)

out 3 3 3 N-1
Iy (IN - 1',3_1) (IN - IN—1) (54)
v —3  _I(r,) - I(zy
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6.1.3 Treatment of Inelastic Strain Integrals

The inelastic strain integrals are evaluated numerically by using a Simpson's Rule
approximation to the integrals over each cell. This was found to give the correct result for
the case r, = 0, whereas the trapezoidal rule did not. Simpson's Rule can be expressed as

b
. B . b-a
{f(x)dx~ J(fy + 4Ly + £5), h= 2 (55)

where the integration interval is divided into 2 subintervals. When applied to a finite
difference cell, the integrand f(x) is generally defined only at the cell edges, so that the
midpoint value (f, above) must be approximated as some average of the edge values. Using
the arithmetic average, the first integral term over the inelastic volumetric strain in Eq (31) is
approximated as

I
I,(r;) =4 frze”dr
Tia

2 " 2 N
r. - r. ri,e;, + rje; (56)
~ i i-1 2 " i-1Ci-1 1<a 2./
~).-——6—(ri_lei_1 +4£ > ) +riei)

Jzd - ) (efs + ef)
3 2

n

The second integral term involving the radial inelastic strain is approximated in a similar
manner. The third integral term (the double integral) was numerically integrated as

r!

I el . - eB//
I.(r;) = 4p fr’zf-—r’l—,—dr’
Fon Tim T (57)
" " " %
T (er; + €r,51) - (€g,; * €,4-1) | 3 3
% (Fi = Ti-1) T T (Ii Ii-l)
(L; i-1)

This form avoids dividing by zero if r, is zero. The above integral is the result of applying
Simpson's rule to the integral of I,(r) and evaluating I,(r) as
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i /"
e, - €
I, (r,) = 4“f+r__°dr
I,

i1 (58)

14 14 /7 "
(eri + er,i-l) - (ee,i + ee,i-l)

(i * Tia)

= AR(I; - Iia)

Returning to the question of how to handle the integral terms in the equations for the strains
when r, — 0, the volumetric inelastic strain contains only a thermal inelastic strain
component; the creep inelastic volumetric strain is zero because of the assumption of
incompressibility. The thermal strain becomes constant with r as r — 0, so that the first
integral term is of the form

I,(€) = l%ée” (59)

where e” is constant. Since the integral is divided by r’ in the strain equations, the term in
the strain equations

éra(e) -2te’ = A (aAT) (60)

Wl

as € approaches 0. The thermal strain component of the second term involving e", behaves
similarly, and the third term and /, both have no thermal component.

This leaves the problem of how the terms involving creep strain behave as r, goes to zero.
The assumption is made that the creep radial strain component in the second integral term
becomes constant with r as r — 0 and can be treated in the same way as the thermal
component. The third term can be shown to be zero if the strains are either constant in r or
depend on r to some positive power. The I, integral can be shown to go to zero if the strains
depend on r to a positive power or are identically zero.

6.2 Solution Method

The solution method used is to assemble a set of linear equations for the displacements at the
node edges, using Eq (50) for the interior nodes and a different equation for inner and outer
boundary nodes. If the inner boundary condition is zero displacement, then u, is specified
and there are N-1 equations, starting at u,; if a pressure boundary condition is used at the
inner boundary, then there will be N equations. The equation for u, is Eq (54) and, if an
inner pressure boundary is specified, Eq (52) is used for u,. The boundary pressures and
inelastic integrals (evaluated using old timestep values) form a source vector; the coefficients
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of the displacements form a tri-diagonal matrix; the system of linear equations can then be
solved using the Thomas algorithm.

After solving for the displacements, the stresses and total strains are obtained from the
appropriate equations. The stresses are then used to calculate new creep strains, which are
compared with the old timestep strains; if there is more difference in the strains than an input
convergence criterion, then the displacement equations are iterated using the new creep
strains. This is the same procedure as in PSTRESS, but in HEISHI the usual result if
iteration occurs is to not converge; therefore, it is advisable, if creep strains are not
converging, to reduce the stress-strain timestep rather than to iterate.
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7 ALITY ASSURANCE TESTING FOR THE STRESS-STRAIN MODULE

Acceptance testing for the HEISHI
stress-strain module consisted of
two parts: comparison of results
from HEISHI calculations of
stress-strain problems to analytic
solutions of the same problems,
and comparison of results
calculated using the HEISHI
algorithm in Mathcad to the
analytic solution. Comparisons
were done of stress, displacement, Figure 4 Geometries used for stress-strain tests.
total strain, and inelastic strain at

boundaries and internal interfaces (if any). The problems used for testing are described
below. The material properties for all cases were E = 20.7 GPa and v = 0.3 (A = 11.94 GPa
and p = 7.96 GPa) and the geometry is shown in Figure 4. In all tests on hollow spheres, the
inner radius a = 0.1 cm; the outer radius b is always 0.25 cm.

7.1 ST1 - Hollow Sphere with Internal Pressure

In this test, the analytic solution for stress and strain in a hollow sphere with constant material
properties was used (Lin 1968, p. 242):

_ 1 “(h3D - 53 343 - 1
g, = ?aa[ (b PO a P)_) + a*b (Po PJ.) F] (61)
- 1 __ I 3Ip - a3 _ 1 abd - 62
U T ai| T zp (b7F, = a’py) 4p7(Po Pi)] (62)

Inner and outer pressure boundary conditions for ST1 were P, = 10 MPa and P, = 0.

The same problem was set up for HEISHI using 20 finite difference nodes and the solutions
compared. The standard deviation in the radial stress solution was 0.0009 MPa and that in
the displacement was 1.4 x 107 cm, which should be compared to the maximum radial stress
of -10 MPa and the maximum displacement of 3.5 x 10° cm at r = a. The radial stress and
displacement results for the analytic solution and the calculation are shown in Figure 5.
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7.2 ST2 - Hollow
Sphere with
External Pressure

This test is the same as ST1
except that the outer pressure P,
is 10 MPa and the inner pressure
P;is 0. The same standard
deviations between the
calculation and the analytic

solution were obtained as in ST1.

The maximum radial stress is
-10 MPa and the maximum
displacement is -5.7 x 10 c¢cm at
r = b. The results are shown in
Figure 6.
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Figure § ST1 radial stress and displacement.
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Figure 6 ST2 radial stress and displacement.
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7.3 ST3 - Hollow Sphere with External Pressure and Zero Displacement
Inner Boundary

This test is the same as ST2, except that the inner pressure boundary condition is replaced by
an inner zero displacement boundary condition. The equations for radial stress and
displacement for these boundary conditions are different than for inner and outer pressure
boundary conditions:

3
g, = -P b3 1 (34 + 2 + 4 E—] (63)
i °7 (3A + 2u) b3 + 4pa3[ k) Hrs

u=-°Pb3 1
(34 + 2p) b3® + 4pa’

1 - a_j] (64)
r

The comparison between the
calculation and the analytic
solution was again very good 0
(see Figure 7). The radial stress e
in this problem starts at -10 MPa ~
-05 .
at the outer boundary and 1107 ¢ x s
decreases to -15.5 MPa at the e
inner boundary, while the
magnitude of the displacement is
maximum on the outer boundary
(-4.2 x 10° cm) and decreases to
zero at the inner boundary. Note
that taking the limit of the above 4e10% L/
equations as a — 0 to derive the i
equations for a solid sphere only
works for the displacement - the -5:10% - .
radial stress equation always has 0.1 0.15 0.2
an extra term, which produces an Radius r (cm)
increase in the calculated radial
stress near r = 0. The actual
radial stress is a constant with r

A
i
‘X
x
A
Z 3

1
'

—

NN

Radial Stress ¢, (M

2410% | I

3109 | /

Displacement u (cm)
~
~

)
N
(&)

o

N

[6) PN
0]

for this problem. I mention this  Figure 7 ST3 radial stress and displacement

because instructions for finite comparison.
element stress-strain computer
codes, and even some "stress-strain cookbooks", sometimes recommend letting the inner
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radius approach zero as a way to get the answer to a solid sphere problem, which will not

work.

An example of the solution obtained with the hollow sphere equations by letting a — 0 is
shown in Figure 8. As can be seen by comparing the solution in Figure 8 to the equations for
a solid sphere in the next section (ST4), the hollow-sphere solution approaches the real
solution except near r = 0, where there is a slight deviation in the displacement solution and a
large deviation in the radial stress. Curiously, the deviation in the radial stress approaches a
constant as ¢ — 0, but remains in the radial stress solution, whereas the displacement
approaches O (the correct solution at r = ().

0 -10
1107 _
_— [ i g
§ g
3 .2.10% °)
& 2
€ 2
§ _3'10-05 "-"4?
a 8
2 S
[a} [ (i d
4:10 [
l 4-16
_5_10-05 L 1 L 1 1
0 005 0.1 015 02 025 03
Radius r (cm)
Figure 8 STRO radial stress and displacement

solutions as a — 0.

7.4 ST4 - Solid Sphere
with External
Pressure

This test is the same as ST3
except that the inner radius is
zero and the sphere is solid. The
equations for the solid sphere
under external pressure are

g, = -P, (65)

— I
U = - Py (66)

As can be seen from the
equations, the radial stress is a
constant equal to -10 MPa and
the displacement has maximum
magnitude at the outer boundary
(-4.8 x 10”° cm), decreasing

linearly to zero at r = 0. The comparison was again very good.
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7.5 ST5 - Hollow Sphere with Thermal Inelastic Strain

For this test, inner and outer pressure boundaries were both set to zero and an analytic
solution (Pilkey and Chang 1978, p.267) was used for the comparison: the result for constant
thermal strain is, of course,

0, =0, u=1a(T - Tpo) (67)

where the displacement corresponds to the result for constant thermal strain (see Eq (35)). A
CTE of & = 12 x 10° and AT of -1350 K were used, giving a maximum displacement of-
-0.0041 cm. Again, no significant error was seen in the comparison results.

7.6 ST6 - Solid Sphere with Thermal Inelastic Strain

The analytic solution was again from Pilkey and Chang (1978), but with a = 0; the equations
and results are the same as for STS.

7.7 ST7 - Interference Pressure in Two-Region Hollow Sphere
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Figure 9 ST7 radial and hoop stress: (a) temperature less than reference temperature; (b)

temperature higher than reference temperature.

This problem was intended to test the calculation of interference pressures between two
regions with unequal CTEs. A constant temperature was assumed across a hollow spherical
shell consisting of two regions with the inner region having a higher CTE than the outer
region. The CTE for the inner region was the same as in ST5 and ST6, and the CTE for the
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outer region was assumed to be 6 x 10°. Material properties were otherwise the same in both
regions (same as in previous tests). The geometry was also the same as for the previous tests,
except that there was a region boundary at r = 0.2 cm. Cases were tried for temperatures

both higher and lower than the reference temperature, resulting in both compressive and
tensile interference pressures. In case (a), the temperature was 1350 K lower; in case (b), the
temperature was 1350 K higher. The analytic solution is Eq 4.5-2 and Eq 4.5-3 from
Dobranich (1991) (note that the definition of the AT terms in 4.5-3 results in division by a
factor of 3 for a constant AT, versus the definition given in Eq (35)). No significant error was
seen in the comparison. The radial and hoop stress for both cases are shown in Figure 9.
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8 RADIAL TEMPERATURE ATIONS AND SOLUTION METHOD

8.1 Finite Difference Equations

The finite difference equations for the radial temperature solution are set up on the same mesh
grid as the stress-strain equations (see Figure 3). There are again N nodes, and a convective
boundary condition is used on the outer boundary. The inner boundary condition can be
either the radial gradient equal to O or a specified heat flux.

The equations are set up as a set of linear equations, with the coefficients of the unknown
temperatures forming a tri-diagonal matrix and the boundary terms and power source forming
a source vector. The general form of the equation is derived from Eq (43) by replacing the
derivatives with finite differences and assuming constant node spacing, thermal conductivity
evaluated at the average temperature of the two adjoining nodes, as

T - T T

s T T - T, - T, — T, - Tf
(ri)zki('_A"r——'] - (ri)zki-l(—"Z"r_l) +Viq; = Vi(pcp)iT (68)

where subscript i refers to the £ node, At is the timestep, superscript n refers to the old
temperature, and the bar refers to the degree of implicitness:

Ar = 28r, V; = %((IIP -(r{)¥), T=yT+ (1-y) T" (69)

In terms of the mesh grid, the nodes refer to the cell edges and the radii r;* and r; are cell-
centered. When 7y = 0, the equation is explicit; when ¥ = 1, the equation is implicit; and
when ¥ = 0.5, the equation is time-centered (Crank-Nicholson form). There is one equation
for each node, forming a set of simultaneous equations. Since each equation is coupled only
to its neighbors, the resulting coefficient matrix is tridiagonal and the solution can be found
easily using the Thomas algorithm. The equation for the i node is of the form

a; T, + b.iT.i + c.iT.i*l = di (70)

1+i-1

where the coefficients are, for the general case,

a; = (£ k=¥, ¢ = (2D 2kiy 5=, (71)
+ - CcC).
b= (e ks + 2D 2oy g )1 - VB (72)
and
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- 2 2 1 Th -
d, ((r )2k, AI Ta ¢ (2]) 2k 5= 1_1)(1 Y)
Y 2 _ Ty 2 1
( (r]) ki—Ar (r]) 2k 5= )T (1-7) (73)
Ty
- (pC); V. v Vilg;(E)y + g;(t") (1-v))

These general coefficients must be modified at the inner and outer boundaries of the problem
and at interfaces between layers.

8.2 Boundary Conditions

At the inner radius (node i = 1), either an adiabatic condition or a specified heat flux
boundary can be used. These are both applied the same way, with the adiabatic condition
having a heat flux of zero. The boundary condition is expressed analytically as

" o_ aT
q ar (74)

and, referring back to Eq (43), the heat flux at the inner boundary (second term) is replaced
by the specified external heat flux. This affects terms in the a,, b,, and d, coefficients. Also,
since the temperature for node 1 is on the inner radius, the inner node boundary r, is equal to
the inner radius r,. The modified coefficients are

. 1 (pCp)
al’_'O, b1=_(r1)2k1A—rY—V1_A~§—1, (75)
and
+ 1 + 1
dl = "(rl)zkl'A—rTzn(l—Y) + (Il)zkl_A_;Tln(l—Y)
T 76
S PG VigE - V(@ (8) Y + @ (£ (1-y) (76)

- (r))AH@"(e)y + g’(t™) (1-7))

where ¢"(t) is the time-dependent specified heat flux. For an adiabatic boundary, the ¢" in
the equation for d, is set to 0.
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The outer boundary condition is specified by setting the heat flux at the outer radius equal to
a convective boundary condition, expressed analytically as

k2T

h(T-T.pp)) = ar

(77)

This affects the b, ¢, and d coefficients for the outer node N. The temperature at node N is
also on the outer radius, so the outer node boundary r,* is equal to the outer radius ry. The
modified coefficients are

- = ()2 ek L)y -y (PN 78
Cy 0, bN ((IN) h(t) + (IN) k-l AI)Y VN At ! ( )
and
dy = - (Zg) 2Ky, === TP (1-7) - [~ (z8)2h(E) - (r7)2ky, 2|78 (1-7)
N N N-1 Ar N-1 N N N-1 Ar N
Ty (79)
- (PCP)NVN~A—C - VN[QN(C)Y + qN(t") (l—Y)]
= (IR [B(E) Teoor (E) ¥ + B(ET) Tpppy () (1-7)]
where the convective heat transfer coefficient A(z) and coolant temperature T, (t) are both

functions of time.

8.3 Interface Conditions

At an interface between layers, the temperature node lies on the interface. The interface node
thus includes regions from the two layers forming the interface. Since the layers can have
different material properties and different node widths, the energy storage term (RHS of

Eq (68)) is modified to use the volume average of the heat capacity. The volumetric heat
source is also modified to be the volume average. These changes affect the b and d
coefficients for the interface node, with the understanding that the Ar in the two flux terms in
Eq (68) is the distance between the two temperatures in the numerators.

In the actual coding, it is useful to keep the concept of auxiliary nodes at an interface, even
though there is actually only one temperature (and one linear equation) at an interface. The
auxiliary node variables provide storage for extra terms needed at the interface, which are a
pC, term evaluated at the interface temperature using properties of the next adjoining layer,
and volume and heat source terms for the next adjoining layer. If the auxiliary terms for
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interface node i are denoted by the additional subscript x, then the energy storage term for the
b, coefficient is written as

1
(Vi (pCp); # Vix(pcp)ix)’A_E (80)

where the volumes are

(D)2 - 1) (81)

1

Vi = 3(e} - (2D, Vi -

wl

A corresponding term appears in the d, coefficient. The heat source term is similarly
rewritten as

Vi(@i (6) ¥ + @i (t7) (1-9)) + Vi(Que (E) ¥ * @in(£7) (1-7)) (82)
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9 QUALITY ASSURANCE TESTING FOR TEMPERATURE ALGORITHM

Acceptance testing for the HEISHI temperature algorithm was done by comparing the results
of a calculation by HEISHI to an analytic solution. The test problem was in spherical
geometry and had internal heat generation in a central core, a non-heat generating outer shell,
and a specified outer convective boundary condition. The problem was allowed to run until
steady-state was achieved (defined as when the internal power generation in equals the
convective heat flux out) and the resulting centerline and surface temperatures compared to
the aralytic result. Agreement was very good, and no error was observed between the
analytic result (done with Mathcad) and the HEISHI finite difference solution.
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10 GRAIN GROWTH AND FAILURE FRACTION MODELS

Grain growth can occur in ceramics and metals as the temperature is increased. The increased
grain size can then have an effect on the ultimate tensile stress of the material. A simple
model is included in HEISHI to describe grain growth in the particle layers. A simple failure
fraction model based on brittle fracture theory and a Weibull failure distribution (Weibull
1951) is also included, which uses the grain size as a parameter.

10.1 Grain Growth Model

The grain growth model assumes that grain growth can be described by a parabolic rate law
with an Arrhenius temperature dependence for the rate (Burke and Turnbull 1952):
Q.
—2

- 52 B (83)
a? =a, + K, te T

where

a = average grain size (m),

a, = initial average grain size (m),

K, = rate constant (m?),

Q, = empirical activation energy for grain growth (J/Mol-K).

This equation approximately describes normal grain growth kinetics in a variety of ceramics
and metals (Simpson et al. 1971). As used in HEISHI, the above equation is used to describe
the grain growth in each material region, or layer, using an average temperature in the layer.

10.2 Failure Fraction Model

The failure fraction model assumes that failure fraction of the particles, with failure defined
here as the brittle failure of the outer coating layer, can be described by a Weibull distribution
(Weibull 1951). The Weibull distribution is based on the idea that failure is controlled by the
"weakest link", in this case the largest flaw in the material. This type of behavior is typical
of brittle failure in ceramic materials. The assumption is also made that failures in ceramic
particles occur due to brittle fracture, an assumption that is true at temperatures up to the
brittle-to-ductile transition temperature of the material. The Weibull distribution is used in the
form (Evans et al. 1972)

o o
£y -oT%)) (84)
where
f = fraction of particles in sample population that fail,
o, = effective tensile stress (Pa),
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o, = normalization parameter for sample population distribution, here taken equal to
the fracture stress (Pa),
Weibull modulus (5-20).

m

The Weibull modulus reflects the degree of variability of the fracture strength in the sample
population, with higher values indicating less variability. The range 5-20 is typical of
ceramics (Davidge 1979, p. 136), and a value of m = 6 is the default in HEISHI (Evans et al.,
1972, gave a value of m = 8 for SiC coated particles). The Weibull distribution can be used
to relate failure probabilities in different volumes of material by including the volume V in the
exponent, but as used here to relate failure probabilities of the same particle design under
different stress conditions, the volume term is not necessary. The variation of the maximum
tensile stress through the thickness of the outer layer is accounted for by calculating the
effective tensile stress as

g, = %,fomaxdv, Oprmax = Max (0, 6., 0g) (85)

where the integral is over the volume of the outer layer, and the integrand is the maximum
tensile stress, taken as the maximum positive principal stress.

To relate grain size to fracture stress, use is made of the fact that the fracture stress is
inversely proportional to a critical crack size (Griffith 1920, 1924):

1

- (86)
vyC

Ofp =

Under the assumption that the failure is controlled by the weakest link (Weibull 1951), failure
is controlled by the largest crack (flaw) size, which gives the lowest fracture stress. Further
assuming that this critical crack size is proportional to the grain size (Davidge 1979) gives the
needed relation between the grain size and the fracture stress:

a
Of = Og, ?" (87)

where G, is the fracture stress for the initial grain size in the as-fabricated particle. No
temperature dependence is included in the fracture stress (other than indirectly through the
grain size) because fracture stress in ceramics is essentially temperature-independent until the
temperature exceeds the brittle-to-ductile transition temperature, which is about 0.6-0.7 of the
melting temperature for ceramics.
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11 CODE STRUCTURE

The overall code structure consists of input and initialization routines, followed by a main
loop wherein the runtime routines are called once every main timestep. The stress-strain
routines are on a sub-timestep, so that a main stress-strain controlling routine is called with
the main timestep, and the control routine then calls the stress-strain solution routines using
the stress-strain sub-timestep until the main timestep is covered. The main timestep is
increased according to a user-input criterion, limited to a fraction of the halflife of the fastest
decaying nuclide present at any given time at the rate determined by the input factor.

Output occurs at plot time intervals which are separately defined for the decay chain and
stress-strain output files. Output intervals for the decay chains are increased based on a user-
input criterion, while the stress-strain output occurs at a fixed user-input time interval. Output
can be forced at a specific time by including either a real or dummy time-power pair in the
power-time history input table. Forcing output in this manner will reset the output interval,
which will then start to increase again.
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12 SUMMARY

This report describes the equations, calculational procedures, and features of HEISHI

Version 2.1. HEISHI is currently capable of analyzing fission product release data for a large
variety of particle bed problems, and of calculating and predicting the stress-strain behavior of
a large class of multilayer particle designs.

As mentioned before, HEISHI does not account for spatial variation in fission product
generation rates within a bed, and the time-dependent release coefficients are read-in empirical
values, although there is some provision to calculate initial estimates from diffusion
coefficients. The HEISHI stress-strain module also does not account for geometry changes
during a problem such as separation of layers due to internal tensile stress, or melting of one
or more of the layers. The modeling of these effects and inclusion of their effect on release

rates is an area for future improvements in the code.
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14 APPENDIX - HEISHI INPUT/OUTPUT MANUAL

This appendix describes the input and output for the HEISHI V2.1 fuel particle code. Version
2.1 contains a solver for decay chains of retained and released fission products, a stress-strain
module with creep strains, and models for grain growth and failure fraction. The stress-strain
module is derived from PSTRESS. The grain growth model uses input parameters and a
parabolic rate equation to describe grain size as a function of time and temperature. The
failure fraction model assumes a Weibull distribution with an inputWeibull modulus and
initial mean failure stress. The mean failure stress can vary with the grain size. All input is
read in from the main input file hs2.in described below.

hs2.in format

The input is free format and generally consists of a descriptive line followed by the
corresponding input. In some cases, such as tables and decay chains, the descriptive line will
contain a variable followed by a slash (/); this means that the variable before the slash is on a
line by itself and the variables following the slash are on the next line -- possibly repeated.

L. TITLE1 (A)
This is an alphameric field describing the problem input

II. TITLE2 (A)
This is an alphameric field describing the problem input

I11. ioptdc, ioptst, CFACRR, Vbed, bedeps, ioptR, ioptT

A. ioptdc = flag for decay chain calculations. O:read input and do calc. 1:read
input, no calc.
B. ioptst = flag for stress-strain calculations. O:read input and do calc. l:read
input, no calc.
C. CfACRR = coupling factor to convert input power (W) to actual
power in the fuel (W/m’-bed).
D Vbed = Bed volume (m®). The total fission source used in the
code is calculated as Q*CfACRR*Vbed/29e-12.
E. ioptR = Release coefficient option.
= 0: Read in release coefficients in a table.
= 1: Calculate from the temperature-time table and diffusion and
geometry data.
F. ioptT Temperature option.

0: Read in temperature-time table and use as uniform
temperature.

1: Calculate a steady-state temperature profile from the power-
time table, material and property data, and heat transfer
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coefficient, with the temperature-time table as a boundary
condition.

= 2: Read in temperature-time table, read in spatial temperature
distribution table and Q (activation energy) table to adjust
diffusional release coefficients.

IV.  tstop, tunits, dtprint, pincr
A. tstop = problem end time in units of days or seconds (see tunits
variable).
B. tunits = time units for tstop, one of: 'd' = days, 'h'= hours, 'm'= minutes,
or 's' = seconds.
C. dtprint = initial output time interval (s). Both dtprint and the internal
timestep are increased by pincr every dtprint seconds.
D. pincr = factor to increase timestep and dtprint by every dtprint seconds
(1.1).
V. Npow/qtim,Qtab (Power-time table, Npow pairs of points, 1 pair/line).
A. Npow = number of points in the time-power table.
B. gtim = time point (s).
C. Qtab = input power at time qtim (W reactor).
NOTE: Qtab is used as the output time controller, so that an output occurs at every Qtab
entry time.
VI nhtab/htim, htctab (heat transfer coefficient-time table (W/m’K).

VIL

VIII.

A. nhtab = number of points in the time-heat transfer coefficient table.
B. htim = time point (s).
C. htctab = heat transfer coefficient (W/m?K).

nttab/ttim, tctab (coolant temperature-time table)

A. nttab = number of points in the time-coolant temperature table.
B. ttim = time point (s).
C. tctab = coolant temperature (K). This is used as a boundary temperature

if the temperature calculation is on (see ioptT) or the uniform
particle temperature if the calculation is off.

ndt/dtt, dtmax (dtmax-time table)

A. ndt = number of points in the time-dtmax table.
B. dtt = time point (s).
C. dtmax = maximum timestep at time dtt (s). Timesteps are interpolated

between points in the table. If the run time exceeds the last time
in the table, the last dtmax value is kept. This behavior is true
for all tables in the input.
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IX.

X.

Vratio, Vfrac, atom_limit

A.

Vratio

Vfrac

atom_limit =

ratio of total particle volume to volume of 1 particle = number of
particles. This is used only in the calculation of release
coefficients from diffusion coefficients (see ioptR).

fraction of released fission products sampled, used to multiply
output activities. Vfrac can also be used to convert the output
activities (counts/s) to other units, ie, Curies (2.703e-11), or to
correct for detector efficiency.

number of atoms below which the nuclide is dropped from the
decay calculations, if power is zero (1e4).

nact (nach(i), nanu(i), i=1,nact)

A
B.
C.

nact
nach
nanu

= number of activities to monitor and output on tty.
= decay chain for ith monitored activity.
= nuclide in decay chain nach for ith monitored activity.

XI. nchain, decaymin, decaymax

XIIL

A.

nchain

B. decaymin

C. decaymax

number of decay chains in problem.

Minimum decay constant allowed while extracting nuclides from
database (2 x 10%, or a halflife of ~1yr).

Maximum decay constant allowed while extracting nuclides from
database (0.1, or a halflife of ~7sec).

nlayers/matid, del, MW, rho, Cp, k, rad

TQmmoaw >

nlayers

matid
del
MW
rho
Cp

k

rad

= number of layers in particle. The next line is repeated for
each layer.

material id label for layer n.

thickness of layer n (m).

molecular weight of material (kg/kmol).

density (kg/m’).

sepcific heat capacity (J/kg-K).

thermal conductivity (W/m-K).

outer radius of layer n (m).

o

The following sections (XIII-XVIII) are repeated nchain times to describe the decay chains.

XIII. labdc

A. labdc
XIV. nnuc

A. nnuc

alphameric label for decay chain. If the 1st 2 characters are not
"rd", ie, dc88, then the decay chain parameters are read from
input. Otherwise, the parameters are read from the decay chain
database and lines XVI and XVII are read instead of XIV and
XV.

number of nuclides in decay chain.
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The following section is repeated nnuc times.

XV. labnuc/dfy, decay, fZ1toZ, fZ1MtoZ, fZMtoZ, irel

A. labnuc = nuclide label ,ie, Br88.

B. dfy = direct fission yield fraction.

C. decay = decay constant (1/s).

D. fZ1toZ = branching fraction, parent ground state (Z-1) to daughter
(2).

E. fZ1MtoZ = branching fraction, parent metastable state (Z-1M) to
daughter (Z).

F. fZMtoZ = branching fraction, daughter metastable (ZM) to daughter
(Z). Note that if the current daughter nuclide is
metastable, it is considered "Z" for purposes of entering
the branching fractions, although the fZMtoZ will always
be 0.

G. irel = release coefficient index for release (atomic number Z or O for

no release). No release of a specific type will occur if the
corresponding entry does not exist in the release table.

XVI. Nucstart, Nucend, Nnucin (Read if decay chain label started with "rd").
A. Nucstart = number of starting nuclide from start of record in database. If O, this
will default to 1.

B. Nucend = number of ending nuclide in record. If O, this defaults to
number in database record.
C. Nnucin = number of nuclides to use in record. This is used in conjunction

with Nucstart and will override Nucend if > 0.

XVIIL (irel(n), n=1,Nnucin) (Read if decay chain label started with "rd").
A. irel = release coefficient index for release (atomic number Z or O for no
release). No release of a specific type will occur if the corresponding
entry does not exist in the release table.

XVIII. Gamma energy intensities of measured species (1-nnuc)
A. gami = gamma energy intensity for nuclide, used to correct for
measurements. There are nnuc of these on a line.

XIX. Ndiff
A. Ndiff = number of families of diffusion coefficient equations. There are
Ndiff rows of parameters entered.

XX. (NZ, D12, Qdiff, n=1,nlayers) diffusion parameters for each layer, 1 family/line.

A. NZ = nuclide atomic number.
B. D12 = lead coefficient in diffusion equation for material in layer n
(m%s).
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C.

Qdiff = activation energy for material in layer n (J/mol/K).

XXI. Nrrate(i),i=1,3

A.

Nrrate = number of families (rows) in time-release coefficient tables.

There will be one row for each type of nuclide generally. There
are 3 tables: (1) Diffusional, (2) Direct (proportional to parent
nuclide), and (3) Surface (proportional to nuclide).

XXII. nti/(trell, n=1,ntl)

A. ntl = number of time points in table.
B. trell = time point (s), repeated ntl times, max 8 times per line.
XXIII. NZ, (rell, n=1,ntl)
A.NZ= Index for release family (atomic number Z).
B. rell = Diffusional release coefficient, 1 value for each time trell (1/s),
8 values per line. If there are more than 8 entries for release
family Z, the succeeding lines contain up to 8 values for rell
each without the leading NZ. There are nrell families of
coefficients.
XXIV. nt2/(trel2, n=1,nt2)
A. nt2 = number of time points in table.
B trel2 = time point (s), repeated nt2 times, max 8 times per line.

XXV. NZ, (rel2, n=1,nt2)

A. NZ
B. rel2

XXVL
A.
B

XXVII.
A. NZ
B. rel3

= Index for release family (atomic number Z).
= Direct release coefficient, 1 value for each time trel2 (1/s), 8
values per line. If there are more than 8 entries for release
family Z, the succeeding lines contain up to 8 values for rel2
each without the leading NZ. There are nrel2 rows of
coefficients.

nt3/(trel3, n=1,nt3)
nt3 = number of time points in table.
trel3 = time point (s), repeated nt3 times, max 8 times per line.

NZ, (rel3, n=1,nt3)
= Index for release family (atomic number Z).
= Surface release coefficient, 1 value for each time trel3 (1/s), 8
values per line. If there are more than 8 entries for release
family Z, the succeeding lines contain up to 8 values for rel3
each without the leading NZ. There are nrel3 rows of
coefficients.
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The difference between diffusional, direct, and surface release coefficients is that "diffusional”
release coefficients multiply the number of atoms of the nuclide in the decay equations and
are intended to represent release through intact coatings, although they could also be used
instead of a separate surface release table; the "direct” release coefficients multiply the decays
per second of the parent nuclides. The "surface" table also multiplies the number of atoms of
the nuclide, but is unaffected by the temperature shape table, if used. There is no other
implication about the actual transport mechanisms involved except that two (tables land 3) are
proportional to the number of atoms of the nuclide and the other (table 2) is proportional to
the decay rate of the parent(s).

The following lines are only read if the shape table option (ioptT = 2) is used.

XXVIII. irm, jzm, drt, dzt, rin, Tfact, inorm
A.irm = number of radial nodes in the shape table (bed).
B. jzm = number of axial nodes in the shape table (bed).
C.drt = Width of each radial node in the bed (m).
D. dzt = Height of each axial node in the bed (m).
E. rin = Inner radius of bed (m).
F. Tfact = Temperature factor used to normalize bed if inorm = 0. This would

usually correspond to the temperature assumed in calculating release

coefficients, so that release coefficients for positions in the bed with this

temperature would be unaffected by the correction factors in the shape

table. (K)

G. inorm = Normalization option flag.

= 0: Usual option, use Tfact as normalization temperature.
1: Use peak temperature in shape table (bed temperatures) as
normalization.

= 2: Use volume-averaged temperature (calculated internally) as
normalization.

The bed temperature shape table, irm values per row, jzm rows, is read from the file
temp.shp. Also necessary is a table of effective activation energies Qa (for the coating, if
that is controlling release) (kJ/mol-K) and atomic number nZ. These are read from file
qzdif.dat, which has records with 2 values per line of the form nZ, Qa. If the atomic number
for a nuclide is not present in this file but a release coefficient is used, a warning is printed at
the beginning of the calculation and the temperature adjustment is skipped for that nuclide.

XXIX. nreg

A. nreg = Number of regions
XXX. (nel(i), i=1,nreg)

A. nel = Number of elements per region
XXXI. rad(i), i=1,nreg
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XXXII.

XXXHI.

XXXIV.

@ >

XXXV,
A.

B.

XXXVI.
A

XXXVIL
A

XXXVIIIL.
A.

XXXIX.

A.
B.
C.

XLI. fm, sfO
A.

rad = Inner radius of region i (m). There are nreg of these
radii, one per line.

rad(nreg+1)

rad(nreg+l) = Outer radius of region nreg (m).

(trefr(i), i=1,nreg)

trefr = Thermal expansion reference temperature for region i (K).
icreep, nci

icreep = creep flag (0:off, 1:on)

nci = number of creep iterations (2).

iplastic, npi

iplastic = plastic flag (0:off, 1:on) (NOTE: THIS OPTION DOES
NOT WORK IN HEISHI V. 2.0-2.1)

npi = number of plastic iterations (3).

igrain

igrain = grain growth flag (0:off, 1:on)

iffrac

iffrac = failure fraction flag (0:off, 1:on)

(imat(i), i=1,nreg)
imat = material id numbers, used to select correct internal
material property function for each region.

(Qfac(i), i=1,nreg)

Qfac = Power factor for region i. This factor multiplies
CfACRR*Q.
XL. gr0Q), gQ(), Akg(i), i=1,nreg, nreg lines
g0 = original grain size for region i (m).
gQ = Activation energy for grain growth for region i (J/mol).
Akg = grain growth constant (m?%s'?).
fm = Weibull modulus in failure fraction model
sf0 = original failure stress in Weibull model (Pa).

B.

XLII. timestep

A.

XLIII. prntint

timestep = timestep for stress-strain module (s)
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A. pratint = print interval for stress-strain module (s).

XLIV. ihtflag, nthi, gam
A. ihtflag = heat transfer flag (O:off, 1:on). This controls whether the
temperature solution routines are used (on) or the coolant
temperature is used (off).
B. nthi = number of heat transfer iterations (2)
C. gam = fractional implicitness used in heat transfer solution
(O:explicit, 0.5:Crank-Nicholson, 1:implicit).

XLV. ibcht, ibcstr

A ibcht = heat transfer inner boundary condition flag (0:flux, 1:zero
gradient).
B. ibestr = stress-strain inner boundary condition flag (O:pressure, 1:zero
displacement).
XLVI. npresi/tt1(i),presit(i)
A. npresi = number of time-pressure pairs in inner pressure-time table
B. ttl = time point (s).
C. presit = inner boundary pressure (Pa).
XLVIL npreso/tt2(i),presot(i)
A npreso = number of time-pressure pairs in outer pressure-time table
B. tt2 = time point (s).
C presot = outer boundary pressure (Pa).
XLVIIIL nhflux/tt4(i),hfluxt(i)
A. nhflux = number of time-heat flux pairs in inner heatflux-time table.
B. tt4 = time point (s).
C hfluxt = inner boundary heat flux (W/m?).

OUTPUT FILES

hs2.out

This is a people-readable short output edit containing (1) a header with the HEISHI version
number and run date; (2) total number of fissions, the result of integrating the power history
multiplied by CFACRR and Vbed from time O to tstop; (3) decay chain data as read from
either hs2.in or fpdb.asc; (4) edit of stress-strain module input; (5) stress-strain output edits.

labs.dat

This file contains the nuclide labels for each decay chain. The file is used by the dcred
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postprocessing program. The records contain

labdc(nc), (Iabnuc(n,nc), n=1,nnuch(nc))

where

nc = decay chain index

labdc(nc) = decay chain label

labnuc(n,nc) = label for nuclide n of decay chain nc
nnuch(nc) = number of nuclides used in decay chain nc.

There is one set of these records for each decay chain, nchain total. The output format =
(1x,a8/1x,10(a8,2x)).

The following data files all have the same format: dca.dat, dcn.dat, dcna.dat, der.dat,
dcrn.dat, dcre.dat.

dca.dat
This contains chain and activity data for released nuclides. The initial record is

nchain
(nnuch(n),n=1,nchain)

where
nchain = number of decay chains
nnuch(n) = number of nuclides used in decay chain n.

format = (16/20i6)

+--repeat following records for each output time---
+--repeat for each chain nc---
t,td,dca(n),n=1,nnuch(nc))

---end repeat for nc---

---end repeat for time t---

where

t = output time (s)

td = output time (days),

dca(n) = activity for released nuclide n in chain nc (calculated as decay*xnr*Vfrac*ge).

format = (10(1pel2.5))

dcn.dat contains number of atoms of retained nuclides.
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dcna.dat contains the activity of atoms of retained nuclides calculated as decay*xn*ge.
dcr.dat contains release-to-birth ratios of released nuclides calculated as xn2/(Fissions*dfy),
where

Fissions = total number of fissions

dfy = direct fission yield of nuclide.

dcrn.dat contains the number of atoms of released nuclides.

dcre.dat contains release coefficients for the nuclides (this is usually only of interest if the
ioptT = 2 option was selected).

The following files are contain output from the stress-strain module.
pstress.dat

Miscellaneous data from the stress-strain module. The main difference between this and the
pstress.plt file is that initial values of mechanical properties are included.

pstress.plt

Output at each stress-strain output time, contains stress-strain data from the stress-strain
module. Values are output for each finite difference node at each output time.
+--repeat following records for each output time---

+--repeat for each radial node---

t,rad,d,sh,sr,eh,er,epphc,epphp,Ish-srl,yield,temp

---end repeat over radial nodes---
---end repeat for each time---

where

t = stress-strain output time (s)
rad = radial position (m)

d = radial displacement (m)
sh = hoop stress (Pa)

sr = radial stress (Pa)

eh = hoop strain

er = radial strain

epphc = hoop creep strain
epphp = hoop plastic strain
Ish-srl = shear stress (Pa)
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yield = yield stress (Pa)
temp = temperature (K).
format = (1x,12(1pel0.3,1x))
hsgeom.dat

Output at each stress-strain output time, contains data from the grain growth and failure
fraction routines.

+--repeat following record for each output time---
t.ff,sf,(gr(j).treg(j),j=1,nreg)

---end repeat for each time---

where

t = stress-strain output time (s)

ff = failure fraction

sf = Weibull failure stress (Pa)

grg) = grain size for material region j
treg(j) = average temperature for region j
nreg = number of regions (layers).

format = (1x,12(1pel0.3,1x))
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